NASA TECHNICAL TRANSLATION

NASA TT F-16869

THE QOJTIMIZATTON OF WIND TUNNEL CONTRACTIONS
F .7 THE SUBSONIC RANCE

G.G. Borger

(NASA-TT-F-16899) THE OPTINTZATION OF WIKD N76-19163

TUSNEL CONTRACTIONS FCR THE SUBSONIC RANGE

?h.D. Thesis (Kanner (Leo) Associates)

145 p HC $6.00 CSCL 148 Unclas
G3/09 20618

Translation of "Optimierung von Windkanalduesen
fur den Unterschallbereich, Ruhr-Universitat,
Fakultat fur Maschinebau und Konstruktiven Ingenieurbau,
Doctoral Dissertation, 1973, pp.1-151

MAR 197R

RECEIVED <«
NASA STI FACILITY =

P o
INPUT BRANCH &

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON,D.C. 20546 MARCH 1976

. e e e - PO -
“r s e socatody dw e

~e

. %
S F

I

%

(=

;\fﬁp.u,g

o

Boile sl .;‘.'s».ummvmﬁmw

-

L P o TP TRy . -0 TN

BTy R W< S S
N

g



i
L
%
LT
T a
o
S
i,
\ ‘
il
i
o .

rrm.--- -

1. Rwo' N

STANDARD THTLE PAGE

- - T
NASA %T F-16899

2. Government Accession No. 3. R“.,..,,. . Co'nlog No
T * an ubtitie y . ) T
“THE dr?'fnhm'rxou OF WIND TUNNEL CONTRA$® ®**widpan 1976 ]
CTIONS FOR THE SUBSONIC RANGE - S

. Performing Organization Code

7. Author(s} 8. Perfarming Organizatian Repart No.
G.G. Borger 10. Work Unit No.
. 11, Controct or Grant No.
9. Petforming Orgoni.ation Nome and Address NASw-2790
Leo Kanner Assoclates 13. Type of Report and Pariod Coverad
‘Redwood City, CA 94063 Translation

12 Sponsaring Agency Name and Address

National Aercnautics and Space Adminis
tration, Washington, D.C. 20546

14. Sponsoring Agency Code

15 Supplementary Notes

Translation of "Optlmierung von Windkanalduesen

fur den Unterschallbereich,' Ruhr-Universitat,

Pakultat fur Maschinebau und Konstruktiven Ingenieurbau,
Doctoral Dissertaion, 1973, pp.1-151.

i

16. Absract  The reported investigation is concerned with the development of
optimal contours for two-dimensional and axisymmetric subsonic wind-tun-
nel contractions. It is shown that the current approaches for the design
of optimal contracting ducts are not satisfactory because of the absence
of an adequate computational procedure for the flow characteristics. A
description is given of a method for the calculation of frictionless
flows in the case of two-dimensional and axisymmetric ducts of arbitrary
contraction or extension characteristics. Fortran IV programs have been
developed for the numerical computations involved. A method reported by
Bradshaw et al, (1976) is used for the boundary-layer calculations. The
developed mathmetical procedures are employed to optimize the design of
the wind-tunnel contractions,

17. Key Words {Selected by Author(s)) 18. Distribution Statement

Unclassified-Unlimited

)

19. Security Classif. (of this report) 20. Security Clossif, (of this page) 21. No. of Pages 22, Price’
Unclassified Urclassified 145
NASA-HQ
R o e e R TR

é
ST i

#
e e 3 WY

L AR TR, T,
: |

D P Uy NPT S U A

T A 0 oy o i oy 2 A Tk

< -

TRy e

cty s e e b % oot e rme we © wam s e

JRCT

< ohga Ten



Lk
e ]

and sink discs.

THE OPTIMIZATION OF WIND-TUNNEL CONTRACTIONS
FOR THE SUBSONIC RANGE

Summarx

The investigation deals with a theoretical analysis of two-
dimensional and axi-symmetrical contractions for wind tunnels in

the subsonic range, with a critical
For the calculation of frictionless flow in subsonic ducts s

a

is developed in which the walls are represented by vortex sheets,
while the limits of the vortex sheets are formed by source
The effects of friction are analyzed by means

of the boundary layer calculation method by Bradshaw et al.

method for checking thus obtained for two dimensional and axi-
symmetrical ducts with arbitrary contours is used to determine the
optimal contours for subsonic wind tunnel contractions. Optimal

L1*

analysis of earlier research.
model

contractions are defined as those having minimal length for a given
contraction ratio and a glven uniformity of veloecity in the discharge

while avoiding separation of the boundary layers.

~ ¥Numbers in the margin indicate pagination 1n the forelgn text.
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Nomenclature

Symbol

Ce
D
d

E
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Meaning

Friction factor, Eq. (3.1)

Relative diameter, relative to Y
Displacement density factor, Eq.(4.19)
Complete elliptical integral of the
second type

Correction parameter, Eqs. (4.8), (4.9),
(4.10)

Relative error

Integral kernel function, Eq. (2.27)
Integral

Complete elliptical integral of the
first type

Contraction ratio

Argument of the elliptical integrals

E and K
Relative contraction, relatlive to Ya

{L = EE_EA}
Number of

Reynolds number
Local coordinates on the contraction

contour
Component of w in x direction

Component of w in y direction

Flow velocity

Inversion point parameter, Eqs. (4.5),
(4.6), (b4.7)
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Symbol

< © 3 o D
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Units

=]

:F§ %Jg‘ ! -
o
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Meaning

Local coordinate in primary flow direction

Local coordinates perpendicular to
primary flow direction
Variable for parameter representation

of £ and n, Eq. (2.30)

Circulation

Circulation over length of vortex sheet

Difference

Displacement density

Dimensionless y-coordinate, Eq. (2.24)
Impulse loss density

Kinematic viscosity

Dimensionless x-coordinate Eq.(2.23)
Density

Tangential stress
Velocity potentilal
Difference between veloclity potentilals

of two points
Dimensionless y value, Eq. (2.25)
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Subscripts

Index

L T o B v s B

korr
max
min

Superscripts

Index
-5

1

+

Meaning

Initial contour point (see Fig.l)

Reference value, Eq. (4.19)
Final contour point (see Fig.l)
Two-dimensional

Induced

Corrected

Maximum value of the 1nduced unit

Minimal value of the induced unit

Caused by source and sink

Axl-symmetrical

Uncorrected

Relatlve to the outside of the boundary layer
Relative to the impulse loss density

Meaning

Vector

Point with 'a singularity

Defined in Egq. (2.5) and (2.7), exception
st (see there)

First derivative with respect to a

Second derivative with respect to a
Multiplied by £, Eq. (2.32)

Mean value
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1. Literature

About two dozen works have been published in the last 50
years about the design of subsonic wind tunnel contractions. The
distribution of the works over so long a period of time indicates
that this problem has never been the core problem of flow mechanics.
The consequence was that a:continuous body of work has nowhere been
prepared about thls problem. The authors (including the author of
the present work) generally took up this subject because they were
faced with a concrete case in which wind tunnel contractions had to
be deslgned, and none of the methods discussed in the literature
were satisfactory. Generally a new method was then developed and
published based on a full development of one of the previous works
(see e.g. Whitehead, Wu and Waters [1], Szczeniowski [2], Jordinson
[3], Cohen and Ritchie [4], and others).

Figure 1 1s a schematic representation of a wind tunnel contract-
ion for the incompressible velocity range as well as the appropriate
velocities along the axes and along the contour. The works about
wind tunnel contraction can be divided into three groups.

Group l: An arbitrary velocity curve 1s analytically specified
for a flow line in the flow from the low entry velocity to a high
test veloclty. With the differential equation for incompressible
flow lines the curves for additional flow lines and their velocity
distribution 1s calculated. One of these flcw lines is selected
on the basis of several criteria, and chosen as the contour flow
line for a wind tunnel contraction.

This group includes the works by Witoszyaski [5] (1922), /7
Szezeniowskl [2] (1942), Tsien [6] (1944), Trwaites [7] (1946),
Cohen and Ritchie [4] (1962), and Mills [8] (1968).
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The method by Witoszynski [5] is based on an axi-symmetrical
flow, with flow lines parallel to the axis in the initial and final
sections of the contractions, The initial and flnal sections are
therefore equipotential plane surfaces. To achleve this, a veloclty
distribution is assumed which decreases and increases in wave form
along the axis of symmetry. The stream tub~, calculated according
to the LaPlace equation, a section of which will serve as the con-
traction contour, correspondingly contracts and expands. In this
application the flow upstream and downstream of the contraction is
led in parallel tubes or as a free Jet. Therefcre the flow in such
a contraction certainly deviates markedly from the calculated flow.
An additional source of error is an approximation in the calculation,
increasing with the contraction ratio., Witoszynskl suggested his
method may be used for contour determination of diffusers, where the
deviations can be 1gnored due to a relatively minor change in
cross section. The length of the contraction is a free parameter
in Wytoszynski's work.

It is interesting to note that up to this date, satisfactory
wind tunnel contractions are being designed with the use of
Witoszynski's formula: using a ratio of maximum diameter to contract-
ion 1length:

Dhax = 1 (1.1)
T
In line with a proposal by Praandtl [9] (1932) the contractions
are expanded somewhat at the exit. The flow in such contractions
is certain to deviate somewhat from that calculated by Witoszynski.
The application of such contractions can therefore only be justifled
by the satisfactory results obtained.
/8.
A further development of Witoszynski's 1dea 1s represented by
the works by Thwaites [7] and Mills [8], although Thwaites does
not seem to be familiar with Witoszynski's work. Thwaltes represents
the contraction contour in the form of a sultably chosen series of
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harmonic functions, whereby the 1nitial and final sectiors of his
contraction become equlpotentlal planes, the velocity increasing
monotonically between these points.

A disadvantage of such contours, as 1s the case with Witoszynski,
is the fact that the calculation 1s based on a contour stream tube,
deviating from the actual flow upstream and downstream of the con-
traction. It can therefore be expected that exactly in the areas
sensitive to pressure increase, at the entry and exit cross section,
deviations from the calculated velocities occur.

The methods of Szczeniowski [2], Tsien [6] and Cohen and
Ritchie (4] are of a somewhat different nature. In *this case
the velocity 1s specified monotonically increasing along the
symmetry axls, with external stream tubes calculated with the
Laplace equation. All stream tubes approximate asymptotic cylindrical
tubes upstream and downstream. In the practical aprlication the
contour flows se2lected are transfered to the cylindrical tubes via
slightly rounded sections. Such contractions therefore have the
same problems as the previously described ones: the effect of the
rounded sections on the velocity curves at the end of the contractions
cannot be exactly determined.

Group 2: A two dimensional non-compressible flow field with ,9
singularities (expansions and contractions) is assumed. Position
and size of the singularities are chosen to cause appropriate
contour flow lines. Especially suitable 1s the representation of
such flow lines and the choice of a ccntour flow line in the
hodograph-plane. It 1s thus possible to choose a velocity distri-
buticn along the contour, before the geometrv of the contour 1s

determined.
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This group includies the works by Hughes [10] (1944), Cheers [11l}
(1945), Libby and Reiss [12] (1951), Whitehead, Wu and Waters [1]
(1951), Gibbings [13] (1964) and [14] (1966), Jordinson [3] (1961)
and Lau [15] (1964) and [16] (1966).

Whitehead, Wu and Waters indicate how the results of this method
can be translated to a system of axl-symmetrical flows.

The work by Hughes [10,. published in 1944] 1s the most eccentric
of this group. A contour flow line is proposed in this work, which
incorporates a velocity jJump, making this work only useful by
appirroximation.

The works by Cheers [11], Libby and Reiss [12], Lau [15], [16]
and Gibbins [13], [14] are based on a line in the two dimensional
flow field, determined by equi-spaced source points, perpendicu-
larly approached with constant velocity. Appropriate contour flow
lines are selected from the flow lines thus resulting. The resulting
contours approach the infinite parallel walls asymptotically. They
must therefore be adapted to the parallel duct walls by rounding off
at the contraction endas. This again causes a deviation of the real

flow relative to the theoretical flow. Gibbings 14] and Lau [16] /10

discuss several possibilities to estimate the uniformity of the
test section velocity, relating it to the length of the contraction.

A very adaptable method, also computationally relatively simple,
is that by Whitehead, Wu and Waters [1]. This method was expanded
by Jordinson [3] to extremely large contraction ratlos. Several
expansions and contractions are assumed in the flow fleld, creating
contour flow lines with walls running parallel to the center line
upstream and downstream of the contraction. Areas of increasing
pressures occur near the entry cross section and near the exit
cross section., The equation for the contour flow line contains an
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independent variable, represented in Fig.l with a and b, representing
the velocity differences corresponding to the pressure in:rease.

This makes 1t possible to choose the pressure increase arbitrarily
low, although increasing the length of the contraction. It also
makes 1t possible to minimize the deviation of the contonr velocity
from the average velocity in the exit cross section, again resulting
in greater length. A disadvantage of this methor 1s that the
velocity curve 1s predetermined by the given singularities, making
optimization impossible.

Group 3: An arbitrary contraction contour 1s specified and an
appropriate r.on-compressible flow ic calculated. The contour is
varied until 1t results in an appropriate contraction flow.

The checking procedure developed by Batchelor and Shaw [17]
(1944), 1s based on a contour, obtained when assuming a harmonic
curve for the velocities averaged over the cross section.
In the case of greater contraction ratios an average velocity, /11
so defined, deviates significantly from the actual velocitles
along the contour. Batchelor and Shaw calculate the actual non-
compressible flow to such a contour with the aid of the relaxation
method, choosing the flow line and the intsrior of the original
contour, in which the maximum pressure increase does not exceed
the value for a diffuser with 3.5° one-sided opening angle.

As mentioned in Cheers' [11] critical analysis of the method
by Batchelor and Shaw [17], the shape of the contour eventually
chosen necessarily depends on the original contraction. The shape
of this contraction was based on the incorrect assumption of a
constant velocity distribution through the cross sections. There-
fore 1t probably does not represent the optimal shape. Furthermore
it does not allow an exact indication of the boundary layer immed-
iately upstream of the contraction. This boundary layer, however,
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determines how great the pressure increase at the entry to the
contraction may be, without causing separation. To use a cstandard
3.5° diffuser as a basis apparantly 1s not adequate to ascertain
universally fitting boundary layers.

Batchelor and Shaw [17] did not fully exhaust the advantage
of a checking method for the determination of an optimal contraction
contour. The advantage is the possibility to study all prossible
contraction contours, after which the most suitable contour is
selected. This is the purpose of the present work. It does not

use the relaxation method, used by Batchelor and Shaw, but the /£12

singularity method developa2d in Chapter 2. Boundary layer calcula-
tions are carried out instead of a comparison with a diffuser, in
order to determine the allowable pressure increase. The problems
caused by this method are covered in Chapter 3. Chapter 4 develops
a method for the determination of optimal contraction contours.

This method results in two dimensional and axi-symmetrical
contraction contours, shorter than all previously suggested methods.
It also allows a definition of the effect of the pressure increase
areas and makes it possible to avoid boundary layer separation.

The discontinuity in the test section velocity 1s only a fraction
of the unavoidable discontinuity caused by flow disturbances. Also

the displacement effect of the boundary layer is integrated into
the method.




. 2. FPFrictionless Flow

P This section represents a method to calculate frictionless /13
oot flow through two dimensional and axi-symmetrical ducts with arbi-

trary expansions or contractions. The method is based on Kilichemann i
and Weber [18], Vandrey [19] and Hucho [20], however, incorporates '
significant improvements, making 1t possible to achleve a high cdegree

iﬂ.wﬁ' of accuracy with a moderate number of plotting points. It is ¢
é e preferable to carry out the derivation of the basic relationships,
3 as in the present case, contrary to the previously mentioned works;

the calculations are made for ducts with internal flows, instead of
solid podies surrounded by flow. This causes several modifications
to the equations.

2.1 Explanation of the Vortex Sheet Model

i Fundamental to this method is the representation of solld walls
by the flow-through vortex sheets (Fig.2). A vortex sheet

consists of a continuous system of potential vortexes of infini-
tesimally small circulation. The axes of these potential vortexes

: run perpendicular to the plane of the rlow for a two dimensional

flow, and surround the flow in the form of a ring in the case of
axi-symmetrical flow. The combined currents over a sectlon ds

result in a circulation dr: yaty

@l = y(s) ds (2.1)

In Eq. (2.1) y(s) represents the circulation relative to length,
here defined as the density of the vortex sheet. The denslty
v(s) variss along the contour. Kiichemann and Weber [18] show on
page 48 that the intensity y(s) 1s equal to the difference between

the velocity components parallel to the layer on both sldes of the
layer. If the layer must represent a sollid wall, intensity y(s)
must be chosen in such a way that cverywhere along the layer the
kinematic flow conditions are satisfied. If it 1s furthermore

11
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required that at the outside of the contraction contour the velocity
equals 0, the local intensity of the layer must be equal to the
local velocity W at the inside of the layer:

v(s) = |w(s)] (2.2)

If the layer 1s in a statioriry location, it develops a velocity
+% on the one side, and -% at the other side. For the requirement
that on the one slide of the system the velocity must be zero, and
; on the other side, the local veloclty created must be superimposed

on the velocity induced by the entlre singularity system: /15

(2.3)

QU ER

+ 3
wy =

2.2 Biot-Savart Law

According to the potentlal theory all singularities in the flow
field produce a velocity Wi(x,y) at each point of the flow field.
Where the singularities of the flow fleld are eddies, as in the
present case, the induced velocity at a point P(x,y) can be cal-
culated with the Blot-Savart Law. For axi-symmetrical and two
dimensional flows the corresponding equations by Kiichemann and Weber
[18] (p.304) can be used.

A circular vortex sheet ring with circulation I' and radius y',
centered at point x', induces a velocity vector d;i at point P(x,y).
With Eq. (2.1) and the elliptical integrals K(k) and E(k), as
defined e.g. by Abramowitz and Stegun [21] (p.589), in the form
of tables and given by approximation equations for practical appli-
cation, the components for d@i are obtained:
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v(s') as' 1 2(y-y") y*

dug = {x ) -[1: el
' 2r Yxex ) Tetyay ) 2L YT b
{2.4)
y(s') ds' +
= ?a Uy . . £2.95)
and:
v(a") ds' {=(x-x')} ( 2yy'
dv, = ,w——-{x(k)- 1+ }sm}
2n yflx-x") 4 (ysy") U (xex) 24 (y-y ") 2
vy(s®) as’ + ' (2.6)
- r (2.7
The argument k of the elliptical integral is:
Ayy'
kK = (2.8)

(x~-x*)2 +(y+y’)?

In the case of two dimensional flow the circular vortex sheet
ring is replaced by two infinitely long, parallel eddy lines of
opposing circulation, perpendicular to the plane of flow.With the

abbreviations introduced above the components of W can be obtained:

du

Y(s') ds'f = (y-y') (ysy")
i - : + (2.9)
a [xex)? 4yt (ex) T a(yayt)?
y(s') ds'
- u .
— . (2.10)
REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR
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? s ds'f (x=-x') (x-x')
o dv, = —- - (2.11)
; av [(x-x')’ +Hy-y")?  (x-x')? #(y1z')?
%' W
- v(3') ds' . :
. g = ve (2.12)
v‘ i 2x
S
: |
é The components of the velocity §i’ induced by the entire layer /17
" at point P(x.y) thus are:
: Se
A 1 {
+
' u(x,y) = — ! y(s*)u ds’ (2.13)
‘ 2n | .
. A .
s
e (2.14)
f vix,y) = — | y(s)v' ds'
' 27 |
b

2.3 Formulation of an Integral Equation for y(s)

In thi- section an equation for the calculation of the circu-
lation d .stribution y(s; shall be derived. The derivation of this
equation 1s carried out as shown by Vandrey [19]. Given two points
Pl(xl,yl) and Pz(xg,y2) at a distance ds apart on the vortex
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sheet -(see Fig.2). Both points are on a longitudinal cross section
plane. An equation must now be derived for the variation of the
flow potential ¢(x,y) along the outside of the vortex sheet,
between P1 and P2. Corresponding to the considerations of section
2.1 the flow at that point must be stationary. This condition is

extensively discussed in section 2.5. Therefore:

d6 =udx +vdy =wds =0 (2.15)

The curve for the potential function ¢(x,y) can then be
determined from the singularities available in this field. Three
components contribute to the potential ditfference d¢ between

points P1 and P2:

Components d¢, of the eddy layer between Pl and P2 /18
2. Components d¢2 of the entire remaining portion of
the vortex sheet

3. Component d¢3 of other singularities in the field.

The vortex sheet between points P1 and P, induces a velocity

-% in the direction of the surface. Therefore:

d¢, = - léil ds (2.16)

The entire remaining vortex sheet induces a velocity corresponding
to Egs. (2.13) and (2.14):

d9, = u dx + v dy (2.17)
sg ”~ .
1 ' + + '
= i?l Y(s') (u” dx + v  dy) ds {2.18)
A
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It 1s assumed that outside the vortex sheet additional singularities
are present. The veloclty components induced by these are represented

by uq,vq. They cause potential differences between P1 and P2:

d¢3 = Uy dx + Vq dy (2.19)

Substituting Egs. (2.16), (2.18), and (2.19) in Eq. (2.15) /19
the following 1s obtalned:

E
dd = 0 = - 1is) ds + = v(s') (u*ax + v*dy) ds' + u dx + v_dy
2 2% q q
%A

(2.20)

The independent variable x can now be introduced instead of s,

so that:
e .21

Dividing Eq. (2.;2) by —2§-, the following is obtalned:

o 1 vix*) + . - ”
s ~y(x) + : ] ?ﬁi?=f=§;? (u dx + v dy) x'‘+ dy +
- ' g u_dx + v dy

M e
YT R
Y(x) = - l ?::?=;-3;? (u’dx + v dy) Ydx'? + ay'? «+

g dx + v Ay

XA + 2 (2.22)
dx? + dy?

Eq. (2.22) is normalized, by expressing all lengths relative
to the center line distance Ya of point A (see Fig.2). The vortex /20
sheet intensity y(s) 1s referred to the intensity y(-=), being the
velocity for the layer infinitely far upstream from the contraction,
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i if the contour were continued with constant cross section up to that |
B point. Intensity y(-«) 1s equal to the flow in cross section {
¢ | X = Xps for reasons of continuity. Thus the following new values
£y are defined:
- X
3 Yn (2.23)
?” nei- (2.24)
. Ya
. - I
. wtg) = LEL T+ G (2.25)
F
% The Fredholm integral equation of the second order thereby .
? becomes:
,?;
- ‘e . 1
. w(g) -: u(€'){u+(£ £') + vhe.en) d"} ac! + dn __i_. f
n ! & a-C. YA B uq Vq dﬁ Y('“) %
£ | §
A H
%
(2.26) ;
!
H
1
i‘\
i
|
]
| |
i 3
| !
17

PRy



-

et

. . . .
o , - .
,
’ . t N N s
N IRY

W L . 1 --—-—-—:"" bt ' . L, '

o . - . o e

", : —— -

Introduecing the abbreviate! forms:

a(g,E") = (e +viEEn Py, (2.27)

and

u v
u(c)-z{-a—+—9-—-"—'l}-z{u*+v*d} (2.28)
9 Yi=)  y(-w) % atvaa

the following is obtained for the integral equation:

Sp

1 .
w(g) = - | wi(f*) G(E,E') dg* + uq(E) - (2.29)
]

A

Appendix 1 shows that G(£,£') results in a singular location
for £ = £' In the axl-symmetrical case. In the case of a two
dimensional flow a finite limiting value of G(§,E') exists for
E = &', which 1s also calculated in Appendix 1.

2.4 Translation of the Integral Equation into a System of
Linear Equatilons

The translation of the integral equation (2.29) basically
follows the works by Vandrey [19] and Hucho [20]. For the later
numerical treatment of the integral equation it is advantageous
to iIntroduce a new independent variable a. This allows for the
accumulation of plotting points in a certain £ range (see Fig.l).
This results in:

THE
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€= §(a) ]
and (2.30)
n = n(a)

Derivations with respect to o are represented by a point.

B
2
ore
i
R »
[ ]
™

{(2.31)
d * a o
aa =" Fr
The following are now introduced:
w(a) = w(g)e & 1
wgla) = u (€)+ & T (2.32)
Gla,a') = G(E,E%)« ¢ |
Also:
g’ = $or dat = € o’ ) (2.33)
Thus the integral equation (2.29) becomes:
Fo l ~ A ~ ‘
wia) = = I w(a') G{a,a’) da' + uq(a) (2.34)
]
%A
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This integral equation must be solved numerically; it is
therefore translaced into a system of linear equations. The entire
length of the layer ap = G, is 1nitlally divided into n = sections
wi*h the width Aa. Subsequently n equations for the n values of
@ are derived from Eq.(2.34) at the interval centers.

Thus the following system of equations is obtailned from Eq.(2.34):

Aa
W32 3
v
~ 1 n an ~ ”~ -~ /2
- ' A
y = \2“‘ (‘:v-v“w“\,ﬂ'“’ Gla,,0') da* + G la)
a
“V Z

u‘- l' 2. cee, N (2035)

The kernel function 8 (au,a') is calculated for each interval
Aa at several points (nine points were chosen in the application).
The circulation intensity & (a') is calculated at the same points
by means of quadratic interpolation of the & values of the interval
centers from the three nearest intervals v-1, v, and v+l., The
integration of the integral occuring in Eq.(2.35) 1is then carried
out with the ald of the Simpson rule. The only deviation from this
rule occurs at the point uy = v 1in the axi-symuetrical case. There
@ is assumed constant, while the solution from Appendix 2 1s used
for the residual integral.

Eq.(2.35) results in a system of linear equations, derived
in Appendix 3.

The improvement of thls system of equations relative to the
system by Hucho [20] is explained in Fig.3. Whereas Hucho retains
@ constant at each interval Aa, resulting in a stepped shape for
the resulting Q(a) curve, the presently used system of equations

allows for a continuous @(a) curve (Fig.3.b). The deviation

-~




of a stepped curve from the actual curve increases with the differential%

dd

coefficient TR Quadratic interpolation and the Simpson rule, on /24

the other hand take into account the slope and the curve of the
8(a) curve, whereby the error only amounts to the third derivative
gé% . When an appropriate parameter interpretation £(a) of the
coordinate in the centeriine direction is used as well as the
previously mentioned improvement,it results in adequate accuracy
at a number of plotted points n = 30-60. The accuracy of the

results for the Q(a) curve is discussed fully in Section 2.6.

2.5 Source and Sink Discs

A system of linear equations was developed in the previous
section and in Appendix 3, for the calcwlation of the circulation
distribution of the turbulent Loundary layer, and the velocity
distribution at the inside. Each line of this equation contains
the expression Gq(au). According to Eq.(2.28) and (2.32):

q u

6 (@) = [2 Elug + vg -'ir)] (2.36)
M ‘

In Eq.(2.36) uq+ and v + are the dimensionless components of 2
velocity, induced by the singularities outside the turbulent layer

at point (Eu,nu)-

In the present case the turbulent layer represents the contour

/25 3

of a wind tunnel contraction, and possibly the contour of the steady
flow region and the test length immediately downstream. A flow shall

be generated inzide these contours, with the propertles calculated
with the aid of the system of equations (2.35). However, steady

flow section, contraction, and test length are not 1isolated; rather

theire is a transition to the steady [low section and a transition

21
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behind the test section. For the experimental analysis of wind
tunnel centractions it would be 1deal to use straight ducts for
the transltion sections with homogeneous velocity distributions,
which cannot disturb the accuracy of the tests. Such a system
corresponds to the approach of two seml-infinitely long turbulent
boundary layer cylinders, or in the case of two dimensional
flow, two dimensional turbulent boundary layers with constant
circulation. These turbulent boundary layers can be connected

to the turbulent layers of varlable circulation density which
have been calculated according to Eq.(2.35). The transition takes
place sn far away from the contraction, that the deviation rrom
homogeneous flow, resulting from flow contraction, is virtually

eliminated. For inhomogeneous flow between turbulent layers with /26

constant circulation, the kinematic flow condltions are not ful-
filled along the turbulent 1layer.

For numerical-mathematical reasons the cylindrical or two
dimensional turbulent layers with constant circulation density are
represented in the present work by a source and sink
disc with constant intensity, perpendlcular to the center line of
the arrangement. The discs represent the boundaries of the turbu-
lent layer with variable circulation at the beginning and the end,
as shown in Fig.2. Kichemann and Weber [18] have shown that such
contraction and expansion discs induce the same flow field as semi-
infinitely long turbulent c~-linders of constant circulation density
(except for a constant veloclty in the interior of the seml infin-

itely long cylinders).

When a semi-infinitely long c¢ylindrical turbulent layer with
constant circulation distribution is enclosed by means of a
source disc with the same intensity, all velocitles outside the
cylinder must be zero. The expansion 1s then supplied only from
the turbulent cylinder.

22

s AT 5 FTT - ca s " - ¢ oot T W S =,
! - ' Iy e

;"*
.
a2
H
|
!
!
3
s
5
§
H

[,

P Ko, o

- 3
s ﬁl .

T e



N,

- Kot

Something similar occurs when an expansion and contraction
dlsc are connected to the turbulent layers of varying circulation /
density, the section of steady flow, the contraction, and the t
test lengths. The entire flow volume given off by the source
disc 1s transported through the ducts and taken up by the sink
disc at the end of the test section. External to thls arrangement
there is no disturbance, providing the following two conditions
are complied with: /27
(a) The entire flow volume given off by the source
disc must be identical to the flow volume received at the
s8ink dise.
(b) Steady flow section and test section must be long
enough tv adequately dampen the veloclty change. due to
the contraction.

If these conditions are not satisfied, flows will occur in the
viecinity of the discs, outside the contraction.

The first condition can be satlisfied easily with the choice
of the intensities. Test calculations have shown that the errors
caused by non-compliance with the second condition are very minor.
If e.g. the source disc 1is connecfted immedliately to the wide
end of the contraction, the error resulting from non-compliance
with the second condition in the downstream portion of the contraction ‘
i1s not arithmetically significant (compare also Section 2.6).

In Appendix 4 the equations for components uq+ and vq+,
induced on the contour by the source and sink discs, «re derived.
These equations can be entered into Eg.(2.35) and (2.36), ailowing
the system of equations to be solved.
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For the numerical computation, Fortran-IV computer programs /28

A g

were developed for the two dimensional and the axi-symmetrical

cases. These programs, together with a short instruction, are

available at the Institute for Thermodynamics and Fluld Dynamics

at the Ruhr-University, Bochum.

2.6 Accuracy of the Computations

The aumerical comp ~ation of the potential flows causes in-

accuracy of the results. Sources of these inaccuracies, in the

order of their probable importance are:

24

(a) The kinematic flow condition is only satisfied in a
limited number of plotting points.

(b) The calculated turbulent layer of variable circulation
has only a finite length. Outside this length the cylindrical
ducts are simulated less accurately with increasing inhomo-
geneity of the velocity profile in the exit cross section.
(¢) A linear system of e uations with up to 70 equations
is numerica..y not fully solved. For the soluticn the
modified subroutine GLD 4 of the German computer center,
Darmstadt, is used.

(d) In calculating the thickness of the vortex sheet,
individual points occur whose effect are only taken into
consideration by approximation. 132
(e) The integral cbtained in Eq.(2.35) is only computed

by approximation with the Simpson rule.

(f) The contour curve n(a) and £(a), as well as the
derivatives n, #, £, ¥ are determined on the contour

..ated by points, with the ald of the Newton interpolation
method.

(g) The elliptical integrals are calculated only by
approximation equations to an accuracy t2 + 10
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The aggregate of these lnaccuraclies must be kept small enough,

not to essentlally affect the accuracy of the contour optimation

process described in the following chapters.

The curve for the contour velocity w(f) shall serve as the

baslis for the boundary layer calculation.

error, therefore, 1is:

‘AW

= 2= <S5 «10 ° .

k ,max w| max

The maximum allowable

(2.37)

The maximum allowble error for the velocity profile u(n) at
the exit cross section of the contractlons amounts to:

p,max

= &u
max

< 0,3+ 10

3

(2.38)

Comparative computations with essentially more accurate

potential flows were

parallel vortex filaments are made to flow uniformly, perpendicular /30

to the plane.

In each case one of the flow lines thus caused was

carried out in order to test
tolerance limits can be adhered to.

whether these

A single vortex ring or two

used as the contour flow line (Fig.6).
lines at the velocities along them (Fig.7) can be computed numeri-

cally as accurately as desired.

The curve for these flow

The flow line curve of Fig.6, thus

obtained, was stated for the vortex sheet-computer program between

the limits -2 < § < 2.

limits, since the program simulates semi-infinitely long two

The flows cannot be compared close to the

dimensional layers or semi-infinitely long circular-cylinderical

ducts, whereas the flow simulated by the vortex ring only has
symmetry-parallel flow lines in the infinlte dimension.

this initial area, the flow lines never deviated more than
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Aw
— < . -3 ﬂ . -3
| w|max,e 2,5-10 wimax,r < 3-10

with an average area of:

% Aw'

ox -3 Aw 10~}
winittel,e < 9¢3°10 < 1°10

“wimittel,r

between the results of the two methods. In this case only 70 plotting
to the wind tunnel contractlion, only 1s covered by 35 plotting points.
Furthermore, no accumulation of plotting polnts in areas of greater
velocity variations were used, a method by which the accuracy could
have been further increased.

Also the veloeclty profililes at the point £ = 0 remained within
the tolerance limits (2.38). It can be assumed that in the case
of contraction calculation described 1n Chapter 4, the errors will
i be even less than in the test calculations, since a greater
' plotting point density is used for the profile in the areas with
greater variation in contour velocity.

26

points were used, the range -2 < ¢ < 0, approximately corresponding /31
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3. Boundary lLayer /32
3.1 Literature Pertal ing to Boundary Layers in Wind Tunnel }
f Contractions
/. .
The works about wind tunnel contractions, cited in Chapter 1, Q
either do not concern themselves with boundary layers, or only
marginally. In most cases this 1is Justified with a reference to ">
Dl monotonically increasing velocities along the contour, retaining
the integrity of the boundary layers.
. Batchelor and Shaw [17] report a calculation of the boundary

layer, however, no reliable results could be obtained with this
method. For this reason, Batchelor and Shaw [17] selected a
contraction, in which the maximum pressure increase is equal to
that in a diffuser with 3.5° half-opening angle (see Chapter 1).
As in such diffusers the boundary layer is known not to separate,

e 5 bk g

an equal pressure gradient was also considered to be harmless

in the case of wind tunnel contraction boundary layers. Batchelor
and Shaw interpreted an area of pressure increase at the downstream
section of the contraction as a calculation error.

Whitehead, Wu and Waters [1] allowed two areas of pressure

increase in their method, as can be seen in Fig.l for the basic

| velocity curve. Although in many contractions close to the

entry cross section boundary layer separation and subsequent
variations in the flow velocity occur, this danger was avolded by
Whitehead, Wu and Waters, by selecting a very gradual transition
of the cross sectlon at the beginning of the contraction. Also
in this case no boundary layer computation was attempted. The

AR e BRI Rt 0 ke R AR b o B0 o o il f 7800 et Rt e
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authors solely recommended to compensate for the displacement
effect of the boundary layer by a slight outward deviation of the

contraction walls.
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3.2 Properties of Wind Tunnel Boundary Layers /3

The boundary layers of all wind tunnel contractions have several
properties 1n common. These properties shall be described in the
following. This will result in conclucsions pertaining to the choice
of an appropriate boundary layer computatlonal method, as well as
the cholce of realistic initial and addition«.l ccnditions, and a
critical analysis of the results of the computation.

3.2.1 Struccure of the Boundary Layer Downstream

From a Screen

The boundary layer in a wind tunnel contraction differs from
solid bodies surrounded by flow, or tunnel flows from a reservoir,
in that there is no defined initial point.

All closed circulit wind tunnels have a cylindrical steady
flow section upstream of the contraction, of lesser or greater
length, preceded by a number of screens and a rectifier for the
homogenization of the flow velocity with respect to quantity and
direction. Downstream of the last screen the flow 1s highly
turbulent, with vortexes with diameters in the range of magnitude
between the diameter of the screen wire diameter, and the mesh /34
size. The vortexes of the Karman vortex street increase down-
stream of the screen wires as they are carried downstream, until
they overlap the ne‘ghboring vortexes, causing them to cancel
one another out. Thils process represents the desired impulse-
homogenization effect. According to this effect, no vortexes can
be created independent from neighboring vortexes whose magniltude
is 1n excess of those created by the screen mesh (compare Bradshaw

[221).

A boundary layer, located along the wall under such a flow,
is involved in tae homogenization process. The screen vortexes

28
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affect an impulse transport from the center of the flow into the
boundary layer. The boundary layer therefore becomes very thin.

The wall can attenuate the turbulent flow in its vicinity to such

an extent, that it can be said a wall-parallel flow results. . Only
when the vortexes in the center of the flow decrease as they are
carried through the steady flow section, a boundary layer can de-
velop again., Due to 1its origin this boundary layer is certainly
turbulent. A normal turbulent boundary layer, 1s defined here

as one, consisting of a laminar lower layer close to the wall,
followed by a layer of increasing turbulence (applicability area

of the universal boundary effect), a layer of turbulence of the

same magnitude as the boundary layer thickness, and finally an /35
interrupted zone, bounding a constant c.re-flow. T

3.2.2 1Initlal Condltions for a Boundary Layer Computation

Under the circumstances Just described, it 1is certainly
impossible to indicate a point, at which the boundary layer para-
meters are adequately known to be used as a basis for a boundary
layer computation. However, there are also situations where the
boundary layer downstream of the screen 1s very thin. Very thin
1s understood to mean: their dimensions are small relative to
the length of the path, required for the core-flow to be signifi-
cantly modiflied. Contrary to thick boundary layers, such thin
boundary layers are practlically solely dependent on local condil-
tions (pressure-gradient, core veloclty, and, in the case of
axi-symmetrical flow, also the local contracticn). Disturbances
or otner effects, located upstream of the boundary layer, affect
it only insignificantly downstream.

This phenomenon can be well explained with the vortex-model
introduced by Bradshaw [23]. According to this model, boundary
layer turbulence originate as small vortexes at the extremitles

29




of the laminar lower layer. Due to the cumulative effect of lateral
velocity, viscosity, and the wall, certain vortex frequencles are
attenuated less than others. Vortexes of these frequencies in-
crease and absorb the energy of other vortexes. During this 1§§
increase 1n magnitude they are repulsed from the vicinilty of the
wall. Frequency and increase are affected by the local pressure
gradients, and the external velocity (or the velocity of neighboring
vortexes). When the vortexes have reached the outer zone of the
boundary layer, and have reached the size of the boundary layer
thickness, the disintegration sets in. The vortexes dissolve in
many smaller mixed alr particles, which partly dissipate, and partly
add thelr energy to other vortexes. As the vortex growth is limited
by the boundary layer thickness, vortex creation and disintegration
follow one another more rapldly as the boundary layer decreases 1in
thickness. Since, on the other hand, these vortexes carry the
boundary layer properties, which they have absorbed during their
growth (frequency, energy) downstream; this transport decreases

with decreasing life of the vortexes. Several lindependent boundary
layer-thickness computatlon methods have shown that the effect

of initial conditions on the path of the boundary layer 1in a

wind tunnel contraction 1s insignificant, providing the initial
boundary layer-thickness 1s selected small. PFrom this 1t can bve
concluded, that a realistle boundary layer path results for a wind
tunnel contraction, i1f a sultable computational method with arbi-
trary initial parameters, but very small initial boundary layer-
thickress is initiated local to the last homogenization screen.
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3.2.3 Zones of Varying Boundary Layer Behavior /37

Figure 8 shows a typical pressure, and boundary layer curve
for a wind tunnel contraction. At the entry point of the flow
into the contraction a weak pressure increase exists. Thls pres-
sure increase also occurs upstream of the contraction along the
cylindrical or straight walls of the steady flow sectlon. There
the flow is initlally slowed, whereas it 1is lncreased 1n velocity
near the centerline of the steady flow section and the entry to
the contraction. The pressure gradient along the wall decreases,
wit' increasing length of the steady flow section. At any rate,
the boundary layer-thickness increases significantly in thils area.
In the case of contractions which contract close to the entry point,
the boundary layer can be separated completely.

Shortly before the contour-invei'sion point WP 1s reached,
the acceleration of the entire flow also affects the zone close
to the wall, subject to a strong pressure decrease. The boundary
layer again decreases in thickness and becomes less subject to
separation. This can be recognized in Fig.8 by the great
contour-velocity gradients. At strong acceleration of the flow
close to the wall, it is even possible that the bouuadary layer
becomes laminar again. The problems caused by this effect on the
calculation of such boundary layer thicknesses will be discussed
extensively in Sectlon 3.3.

It has been described atove, how the turbulent boundary /38

layers carry the boundary layer propertles downstream. During the
acceleration near the midpoint of the contraction contour, the
boundary layer becomes very thin. Correspondingly, this part of
the boundary layer partly transmits any properties of the velocity-
profile, the friction profile, or the turbulence-structure. The
history of the boundary layer 1s largely neutralized by this
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acceleration area. This property of the boundary layer 1s especially
important for the dimenslonal method of the present work, because

it enables us to make statements about the behavior of the boundary
layer in the exit flow of a wind tunnel contraction, although the
behavior of the boundary layer in the supply area 1s not known.

Whereas, as the acceleration decreasss towards the exit of the
cortraction (i.e., the absolute value of the negative pressure
gradient), the boundary layer thickness increases again. Thus the
acceleration of the flow 1s generally not assoclated with an in-
creasing boundary layer thickness. Rather 1t only occurs with a
decreasing boundary layer thickness, when the acceleration exceeds
a certaln value. This value increases with higher intensity and
lesser thickness of the boundary layer. lggl

At the contraction exit there 1s a short section where the
pressure agaln increases slignificantly. Correspondingly the boun-
dary layer there thickens considerably and again the danger of
boundary layer--separation occurs.

3.3 Requirements of the Boundary Layer Separation

In connection with the dimensional determination of a wind
tunnel contraction it 1is not necessary to know all properties of
the boundary layer. Boundary layer separations must solely supply
answers to the following questilons:

(1) How safe against separation in the pressure-lncrease

zone 1is the boundary layer?

(2) To what extent i1s the core-flow displaced by the

boundary layer?
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3.3.1 Freedom from Separation

An indication of the extent to which a boundary layer 1s pro-
tected from separation, is the wall-friction force T It is
common to indicate it in the form of a dimensionless wall-friction
coefficient Cpt

°t = 2 _ (3.1)

The wall-friction coefficient Co is a function of the geometry
and the Reynolds-number. The calculations have shown that the
affect on Cp of the Reynolds-number can be lgnored. Only a rela-
tively narrow range of Reynolds-numbers applies to wind tunnel

contractions. In this range c_. varles very little. /40

f
Boundary layer separation sets in when Cp equals zero. In
wind tunnel contractions maximal cf-values of

Ce = 0.007 (3.2)
max

occur in the area of the greatest flow acceleration. As outlined
in the description of the previous section, the separation must
be avolded in the first area of increasing pressure. Therefore,
minimum values for Cp of

c. > 0.002 (3.3)
fy
should be adhered to in this area for the dimensional determina-
tions described in Chapter 4. This relatively high limlting value
takes into consideration the inaccuracy, still inherent in all
boundary layer calculations (compare e.g., Kline et al [24] and
Coles and Hirst [25]).

33

e g e

o b,

Mbwke # Rt bl HRI D a

idy A

@ et TE e

A
(.0

N N



e

E e e

A "4‘»,‘ REERTE WA e e,
. -

Calculations have demonstrated, that the freedom from
separation increases, with a shorter constant flow sectlon up-
stream of the contraction. To avold separation even in the least
favorable cases, all contraction boundary layers of the supply
flows are calculated for the constant flow sectlon LB =Ny
(nA, see Fig.2), as recommended by Pope and Harper [34] (p.66).

The second area of increasing pressure has much steeper pres-
sure gradients than the first one. From [24] and [25] it can be
seen that this also increases the inaccuracy of the boundary layer
calculations. An additional reason for the inaccuracy of the éi”
boundary layer determination in this area is the possibility that
in the prevlious acceleration area lamination ¢f the boundary layer
may have taken place agalin. There are several criteria for the
return to a laminar pattern. Bradshaw [26] summarizes these
eriteria. For the initiation of the return to a laminar pattern

the condition:

“60 < ,
R%.n v 322 . (3.4)

applies.

It 1s not yet fully known how laminar boundary layers behave.
Research 1s underway to accurately analyze such boundary layers.
Results are presently available, e.g. by Brinich and Neumann [27],
and Narasimha et al. [28]. It can be assumed that boundary layers
returned to a laminar pattern, as laminar boundary layers in general,
whicl. have previously been accelerated considerably, return to
the turbulent pattern very rapldly, as soon as pressure decrease
is eliminated (see e.g. Walz [29], p.158, and an oral report by
Prof. Narasimha).
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No reliable results can therefore be expected from calculations
of the contraction boundary layers, whenever a value less than the
limiting value (3.4) 1s reached. When pressure increase sets in
again, the boundary layer certainly is very thin. Corresponding
te the considerations in Section 3.2 the curve for a thin boundary
layer is largely independent from the initial conditions chosen.

It i1s therefore possible to re-initiate the calculation for the
turbulent boundary layer with very minor boundary layer thickness

at the point of renewed pressure increase downstream of the /42
acceleration area. Due (o the relatively considerable uncertainty
of the results so calculated, an even higher minimal value for

the wall friction ccefficient ¢, should be selected than 1s the

f
case in the fii'st area:

¢e > 0.0025 (3.5)
2
When comparing the maximum wall friction coefficient ¢ from
Eq.(3.2) with the lower limiting valuecs Co and Ce rrofidX
1 2

Eq.(3.3) and (3.5), it will be noticed that at a relatively inaccurate
determination of cp 2 great degree of freedom from separation of

the boundary layer (c = 0) is present.

fap

3.3.2 Displacement

The dimen. fonal coumputation method for wind tunnel contractions,
described in Chapter 4, 1s based on the calculation of the poten-
tial-flow in specified contractlion contours. With the results
boundary layer calculations are carried out subsequently. The
boundary layer displaces the frictlonless core-flow away from the
wall to the extent of its displacement thickness. As a result
the contour of the potential-flow calculatiosn differs from a
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contour, causing the identical core-flow with the int'luence of
a boundary layer, by the amount of the displacement density. This

error 1s generally so small relative to the contour-dimensions, /43

that it can be ignored. At the end of Chapter 4 an example-
calculation is discussed, from ashich it is obvious that ignoring
this displacement 1s practically without effect on the value for
the wall-friction coefficient Cos and therefore on the sensitivity
to boundary layer-separation.

As will be shown in Chapter 4, the velocity distribution over
the exit-cross sectlon of a contour 1s practically only determined
by the contour in the area of the second flow decrease. The velo-
clty distribution over the exlt-cross sectlicn of the contraction
must be constant wlth great accuracy. The error resulting from a
boundary layer displacement represents a significant disturbance
for this degree of accuracy. Therefore the boundary layer dlsplace-
ment 1s taken into account in the area of the second pressure
increase. Section 4.7 describes the detalls of this prccess. There
it will also be shown in an example, how the method of acconunting
for the boundary layer-displacement 1n the wicinity of the exit-
cross section 1s fully adequate for the present case.

Since the affect of the boundary layer-displacement on the
velocity-profile in the exit cross section is, though noticeable,
still relatively small, an error of up to approximately 30% in the
calcu ~tion of the displacement-thickness does not have any
signiricant affect on the result.
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3.4 Selection of a Boundary Layer Computation Method AL

For the selection of an appropriate boundary layer compu=-
tation method the results of the 1968 conference on the calculation
of turbulent boundary layers at Stanford are used as a basls (see
Kline et al. [24] and Coles and Hirst [25]). Since tne contraction
boundary layers described 1n Section 3.2 are subject to very strong
varlations of pressure and velocity 1in their course, a computational
method must be selected which takes into consideration this turbu-
lent origin of the boundary layer. It 1s not sufficient to compen-
sate for the history of the average velocity profile. As
explained above, the boundary layer properties are largely
determined by the turbulent fluctuatlons. A boundary layer compu-
tation method, which compensates for the turbulence, has been
developed by Bradshaw et al. [30]. More detailed information
about the applicatlion of thls method 1s contained ir a series
of reports by the National Physical Laboratory. CIradshaw [31]
gives a summary of these reports. In this method the turbulence
energy equatlon 1s transformed Into a differential equation for
the turbulent friction forces. This 1is done wlth the definition
of three empirical functions, associating the local turbulence
energy and their diffusion a.d dissipation with the friction force
profile. The turbulent energy equation, the mean time equation
for the impulse flow, and the equation for the mean mass dis- ZEEL f
continuity form 2 system of hyperbolical differential equations.
This system cam be solved numerically with the characteristic
value method.

The Fortran computer program by Ferris and Bradshaw [37] was
modified slightly for the calculations of contraction boundary
layers. The modifications mainly apply to the computation of the
intervals between the reference points, which are perpendicular
to the walls. In highly accelerated flows the boundary layers
become thinner, and an automatic reduction of the interval width
must be provided.
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b, Contraction Sizing

4.1 Requirements of a Wind Tunnel Contraction

Both preceding chapters described how the flow processes
in a wind tunnel contraction can be calculated. The expedients
developed there shall now be used in a method %o determine the

optimal wind tunnel contractions.

A given contraction ratio k for the contraction shall be
assumed as the basis for the contraction in a plarned wind tunnel.
The contraction ratio 1s defined as the quotient of the average
exit velocity and the average entry velocity at the contraction.
It is therefore always greater than unity.

As described by Prandtl [9], Gersten [33] and Pope and
Harper [34], a contraction decreases the velocity differences in
a flow. This phenomenon applies to the velocity differences
caused by different specific energy levels of adjacent air layers
in the flow. Such energy differences can be caused e.g. by
the friction of a certain air layer relative to the deflection
baffles in the wind tunnel corners, or other internals, whereas
tue adjacent air layers do not experience this deceleraticn. The
equalizing effect of a contraction is caused by the fact that the
pressure in all adjacent air flows decreases, while the kinetic
energy, corresponding to the Bernouill equation increases with
constant total energy. At the end of the contraction the kinetic
energy of the flow has then increased to such an extent, that the

remaining energy difference in the flow only causes minor veloclty ,i7

differences. The degree of homogenization of the flow velocitiles
is therefore dependernt on ti.e contraction ratlo k and not on the

shape of the contraction contour,
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The impulse exchange between alr layers of differing veloci-
ties also causes a, though lesser, homogenization of the flow.
This phenomenon is covered by Schlichting [35] in Chapter 24:
leeward of a body the wind velocity U, 1s decelerated by u, .

The width b of the section sheltered against the air flow
increases with path length x of the flow, as a function of the
mixing path & of the local turbulence. The velocity deviation
uy therefore decreases correspondingly. Schlichting gives a
relationship Eq.(24.12):

The capacity balance of the velocity in the sheltered area is
therefore more effective e.g. along the path between a flow screen
upstream of the contraction and the test length, with decreasing
veloeity U_. It follows that it 1s desirable to have lorng constant
flow sections and short high velocity sections upstream of a
contraction. The procedures just described indicate that it is
impossible to remove all irregularities from the flow, even with
an ldeal contraction contour. However, with an appropriate con-
traction contour it is possible to have the specific kinetic
energy increase by the same amount along all flow lines of the
contraction flow. Only under that condition is it possible to
achjeve a constant velocity in the test section at large contraction

ratios of k.

There 1s a general correspondence between the contraction

length and the homogenelty of the test section velocity. The /48

deviation from constant test section velocity, caused by the
contractlion, can be minimized with decreasing the length of the
contraction. However, we have previously explained that 1t is
desirable to select the contractlion as short as possible. In
order to establish a compromise between these two requirements it
1s necessary to estimate the disturbing flows In the test section.
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Pope and Harper [34] suggest a maximum deviation of the test
section velocity of 0.25% for good wind tunneis. Disturbances

of this order of magnitude cannot be avoided with the choice cf
contour, since they are present in the flow before 1t reaches the
contraction. The discontinuities of the flow velocity in the

test section caused by the contour, should be of a lesser magnitude
than the remaining disturbances. However, it appears to be useless
to keep these disturbances essentially smaller than the other
disturbances. For this reason a maximum deviation of *0.1% of the
average test section velocity was chosen for the velocity irregu-
larity resulting from the contour. Since the method for the cal-
culation of the velocity distributlon in the exit cross secticn of
the contraction, described in Section 2.6, does nct exceed an
accuracy of *C.03% of the average velocity, the calculated deviation
of the test section velocity should not exceed =0.07%.

Flows 1in wind tunnel ccHotractions basically behave like
friectionless flows. The effect of wall-friction can be compen-
sated by means of boundary layer calculations. The requirements /49
for wind tunnel contractions thus obtalined, are represented in
Section 3.3.

The dimensional determination of a wind tunnel contraction riow
represents the following optimization protlem:

The contour curve y(x) must be so determined that the
relative total length L of the contraction is at a minimum.
Tre following auxiliary conditions are to be maintained:
a) The contraction must have the contraction ratio k (4.1)
b) The arithmetlic lr-regularity of the test sectlcn
veloclty must satlisfy the condition

Au 2 10,07 § (h.2)

Test section
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c) The wall friction coefficient Ce must satisfy

the condition

1

Cpy 2 0.002 (4.3) -

U
-
h

at the entry zone of the contraction, corres- : ";

ponding to sectior 3.3.1. o,
d) The wall friction coefficient c., must satisfy : «f

the condition

> 0.0025 (h.4)

: in the exit zone of the contraction, corres-
] ponding to section 3.3.1.

4,2 Geometrical Parameters of a Wind Tunnel Contraction /50

The optimization problem just formulated, unfortunately cannot
be solved in its general Torm. In theory 1t could be used with the
variation method as developed by Rechenbevg [36] for experimental
optimization. In the pre. nt case, however, the auxlliary condil-
tions cannot be represented as simple functions of the contour

curve. Only after a complicated computational program has been (
: carried out, 1s 1t possible to determine whether it is possible {
1 to satisfy these conditions. For this reason an attempt must be g

R

made to find another possibility to approximate the optimum. A
first step in this direction is the reduction of the general con-
tour curve y(x), to the minimum number of parameters, determining
its curve. In order to avoid separation of flow, the flow must
follow the contour smoothly, without breaks or jumps. Since the
flow is carried to the contraction in a cylindrical duct without

[ SR

curves in the direction of the flow, and must alsc leave the con- N s
traction in the form of a stralght, bundled flow, slope and
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curvature of the contour curve y(x) at the initial point A (compare
Fig.2) and exit point E must be zero. The contour then initially
curves in, goes through an inversion point, after which 1t curves
outward, up to point E where slope and curvature again become

zero. This curve can essentially be described by the location
(XWP’yWP) of the inversion point WP and by the slope %%lWP of the /51
function y(x) at the inversion point (Fig.2). For these three
parameters dimensionless constants are defined as follows:

wz = EWP- CA (4.5)
wh = ] - “"P (4.6)
w
=40 2
Vs dE | WP vy _ (4.7)

When the three parameters Wos wh, and wg are determined, and
when furthermore the slope and curvature of the contour curve y(x)
at points A and E are zero, and y(x) should have a minimum curva-
ture at all points, the contour curve is determined except for some
minor deviations. The computer program developed for the potential
flow includes the computation of a contour curve, which satisfies
all conditions mentioned at points A and E as well as the stated
parameters Wos Wy and W, Details about this computer program

can be found in Appendix 7.

A set of contours 1s defined by the reduction of the general
contoir curve y(x) to one determined by the five parameters Wy, Wy
and Wes Mp (corresponding to k) and L. This set probably does
not include the required optimum curve. As early as 1932, Prandtl
[9] (p.77) indicated that the homogeneity of the test sectlon
velocity can be improved, when the cross seztion opens up somewhat /52
close to the contour exit point E. Whereas Prandtl suggested o
determining the dimensions of this expansion in model tests, the
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computer program suggested in Chapter 2, with the aid of a boundary

layer computation as described in Chapter 3, enables the computation

of the effect of such an expansion. The general curve for such

a ccntour correction 1s represented in Fig.5. The same conditilons
which were assoclated with the requirements for the contour curve
are assocliated with the contour correction. Slope and curvature

at the entry and exit points of the correction must be equal to
zero, and the correction may be characterized only by the condi-
tions at the inversion point WPK. Thus three additional paiameters
€5 €. and > defined in Fig.5, must be considered in the contour
curve. The following appliles:

e, = —= (4.8)
e, = o (4.9)

e, = -&E WPK ;; (4.10)

The optimization problem introduced at the end of Section 4.1
therefore becomes:

Six parameters wl, wh, ws, el, eh, es must be determined in

such a way as to minimize the total length L of the contrac-

tion, still satisfying the auxiliary conditions (4.1) through

(b.u).

N

4,3 TFlow in the Entry Zone to the Contraction

Also cfter the introduction of the six parameters mentioned
above, the optimization problem cannot be directly solved, due to
the impossibility of analytically associatlng the parameters and
the auxiliary conditions. For this reason it was attempted, with
the ald of test calculations, to establish relationships between
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the contour parameters and the auxiliary conditlons. One of the
major conclusions 1s the possibility, described in Chapter 3,

of a division of the contour 1nto an entry flow zone and an exit
flow zone (Fig.2). The shape of the contour curve in the entry
zone 1s practically free from any effect on the flow in the exit
flow, and vice versa. The transition area between the two zones
1s close to the contour inversion point WP.

The auxiliary condition (4.3) is: the wall friction coefficient
Cpy1 must satlsfy the condition Cpy 2 0.002, as shown in Section
3.3.1. The contour 1n this zone is made dimenslonless with the
y-value Ya at point A per Egs.(2.23) and (2.24); it now only
depends on three parameters wl, Wy and LA It 1s thus possible
to determine lines with a constant w,_-value for a WQ(Wé)-diagram

h
(Fig.9), where cpy Just reaches the limiting value

cfl,Gr = 0.002 (4.11)

Outside the boundaries are parameter values which lead to Cpp=

values greater or smaller than c The boundary lines have

minimum points in the representeglfg;ge. This indicates that the
shorter entry zones occur when the contour curve has even curva-
ture over as great an area as possible. Excessive contour slope
at inversion point WP results in a significant curvature of the
contour close t¢ the inversion polnt. Excessively small lnversion
point slope results in a significant contour curvature close to

point A.

The calculation of the Cry
of values for Wos Wy and Wos is carrled out byinitially calculating
a potential flow with the computer program from Chapter 2. The
velocity curve along the contour, thus obtained, 1s used to

-values accompanying a certain set /54

calculate the appropriate boundary layer with the computer program
selected in Section 3.4. The boundary layer calculation starts
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with arbitrary initial values and a very thin boundary layer at
the entry to the section of constant flow, 1l.e. at a location
upstream of point A by e It results in the smallest value for
Cp occurring in the entry zone, represented by c
with Section 3.3.1.

£1 in accordance

4,4 PFlow in the Exit Zone of Uncorrected Contractions

Calculations of the potential flow in contractlons were carried

out, in which the three correction parameters e, © and e were

h
made equal to zero. Thus the contour basically coincided in all

cases with the dashed curve shown in Fig.5.

The calculations resulted in velocity profilles u(EE,n) in the
exit cross sectlon of the contraction. The lowest velocity Upin

at the centerline, and the greated velocity u. at the contour,

ax
all occured at these profiles (at point E according to Fig.2).

From the results the curves © ~ Ymin (E_) could be determined.
Ymax T Ymin "E

Some of these curves are shown in Fig.10. It can be seen from

this that all u(EE,n)-profiles with the same [illegible]

f_‘i = umax- “Mll‘! ‘4 .12) _/_5_5.
ujuk u uk
Au
very accurately with one another. Consequently — can be used
u juk

as unblased parameters for the velocity proflles of uncorrected
contractions (i.e., contractions with eps € and ey equals zero)

at the exlt cross sectilon.
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4.5 Contour Corrections in the Exit Zone

An attempt has been made, with the ald of parameters €,s €
and €y to correct the contour curve to minimize the difference

é% . Figure 11 shows what type thils decrease 1s. For each contour,
u

two of the three parameters el, ey and e can be selected arbilitrarily. L.
The third parameter can then be determined in such a way as to ) ‘
minimize the deviation of the velocity u(n) from the average value ’
u. The minimum is reached when, as is shown in the top of Fig.11,
the velocity at the centerline equals the velocity along the con-
tour. Calculations have resulted in further important results of
the present analysis, indicating that the magnitude of this mini-
mum as a good approximation only depends on €y €5 € and é% .
ufuk
The magnitude of this minimum and the appropriate set of parameters
ez, ey and e therefore hardly vary with different contour curves
(1.e., at different Wos Wy ws) at the same é%
1 juk

From the auxiliary condition (4.2) it follows that the velocity /56

proflile 1in the exit cross section of the contraction is: T

Au u - u ‘
— = Max_ min < 4 6614 (4.13) o
u u

Together with the requirement of identical velocity at the center-
line and at the contour of the exit cross section, described above

andi in Fig.l1l, these are two conditions for the determination of

the four values ez, €y es and Au . Thus two of these values

uluk
can be arbitrarily selected, the other two belng calculated. This

relationship is represented in Filg.l2. Each point of diagram
Fig.12 represents a set of parameter values € B e and é%; s
ufuk
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of which the auxiliary condition (4.13) 1s satisfled, guaranteeing
that the velocity along contour and centerline in the exit cross
section £ = EE are equal.

A general relationship followed from the calculations: as

é% increases, the length of the contraction decreases. In order
ujuk Au
to minimize the length of the contraction ; uk must be chosen as

great as possible. However, the magnitude of é% 1s limited to a

certain range. u

Inspecting the veloclty curves along the contour in Fig.1l1l,
it will be clear that by means of correction the contour downstream
of the veloclty maximum causes a steep veloclty decrease, and
therefore also a greater pressure gradient. At thls point the two
pressure gradlents, the one resulting from the decrease of the
contour curvature and the one resulting from the cross section /57
increase, aggregate. At the boundary layer of the flow the
pressure gradlent effects a decrease of the wall-friction coef-
Ticlent Cone AsAitated in (4.4) ¢, may not be less than 0.0025.
Large values of —g " require correspondingly significant correction
to achieve constant test section velocities. The areas of increased
pressure, thus resulting, can make compllance wlth the auxillary
condition (4.4) impossible for significant corrections. In general,
it can be assumed that, for different contraction ratios k, different
sets of parameter values for W oW sWo 3 €058 € lead to the mini-
mal contraction length L. In establishing the sets of parameters,
three of the six parameters can be varied independently from one
another. However, as explained above, no more than two of the
correction parameters eg,eh,es may be included in these. The other
three must always be determined, in order to satisf{y the auxiliary

conditions (4.2), (4.3), and (4.4).
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To further simplify the optimizatlion problem calculations
with differing parameter values were carried out, each time esta-
‘ blishing the appropriate contraction length L. The results indi-
3 cate that a varlation of the inversion point parameters WosWp W
, affect the length significantly more than variation of the
{ correction parameters 1ir eg,eh,eS are changed In the area of sig-

i
L nificant values for au , corresponding to Fig.l12. Values for

uluk

Au

| aluk 2re considered significant in line with the preceding dls- /58
! cussion, if they allow the auxiliary condition (4.4) to be satisfied.

\ variation of the correction parameters el,eh,es influences

! the contraction length L only to a technically insignificant degree.
! On the other hand, variation computation with variaticn of three

; parameters, even on a fast calculator such as the RUB TR Lo,

{ which was used for the computati~ns in the present work, resulted
in computation times of about 25 hours. The computation time is

. this high largely because the determinatior of parameters on the

§ basis of auxiliary condition (4.4) 1s only possible iteratively.

For the reasons mentioned it was decided to not completely
solve the optimization problem mathematically. Instead, the test
computations were based on the following constant values:

two dimenslional axi-symmetrical

= = 1
€y 0.05 ey 0.05 (4.14)
e, = 3.0 e, = 3.0 (4.15)

From Diagram Fig.l2:

? - =
e, = 1.5 e, 1.45 (4,16)
M| - g 0123 dul = 0.0114 (4.17)
uluk uluk
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From the examples in Figs.23 through 26, it can be seen that the
values selected here result in very short exit zones.

A Turther advantage of keeping the constant parameter values

epsepsey and A% is indicated in Section 4.7. It makes it very
u|uk

simple to compensate for the displacement effect of the boundary /59
layer. After introduction of the fixed parameters WosWysWos€g €58
instead of the general contour curse y(x), and the largely arbitrary
choice of constant values for en and e the present method can no
longer presume to have solved the optimization problem of wind

tunnel contractions mathematically exactly. Rather, we have here

a probably fully adequate approximation solution.

4.6 Determination of the Contraction Length

With the values (4.14), (4.15), (4.16) and (4.17), as well as
the boundary curves of Fig.9, the different inversion point loca-
tions Wys inversion polint slopes Wes and contraction ratios k
(or the countour-ordinate values ng at the exit of the contraction),
potential-flow and boundary layer calculations were carried out.
These flows satisfy the stated conditions (4.1), (4.2) and (4.3).
The value for Ng was varied, keeping all other values constant,
until the auxiliary condition (L.4) was satisfied. The process
of determining the appropriate value Ng was simplified by the
fact that the relatlonship nE(cfZ) very closely approximated
linearity. This =2llowed linear interpolation of very accurate
intermediate values. The result of these calculatlions is shown
in Fig.13. The relative contraction length over W is prlotted there.
The diagram shows lines of constant Ng values., For each value of
ks (also for each contraction ratio k), another value combination

W s W therefore leads to a minimal contraction length Lm*n'
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The minimal values of the L(ws) curves were expected on the /60
basis of Fig.9. Surprisingly the relative contraction length of
optimal wind tunnel contractions had a maximum at a certaln value
for Ng (see the ronnection line of the minima for the L(ws) curves).
While with increasing Wy (1.e., decreasing nyp and nE) the length
L) of the supply zone increases (Fig.9), the length of the exit
zone decreases. This decrease 1s somewhat less for greater g
values than the 1lncrease of Woe As Ng decreases, the contour
veloclty clecse to the inversion point WP irncreases. Since the
velocity increase begins upstream of point WP, the boundary layer
at that point 1s safe from separation and the contour can be curved
in relatively pronouncedly. For decreasing g the length w,
increases relatively less than for a greater value of ng - Thus
the length decrease for low g of the exit flow exceeds the
length increase of the entry zone,

With the results of the calculations just described, a serl:zs
of dlagrams was complled, from which for a glven contraction ratio
k, or Ng the parameters for the contraction contour can be determlned.

These are the fo.lowing diagrams: /61
WQ(HE) Fig.1l4
wh(nE) Fig.15
we(ng) Fig.16
L(nE/ Fig.17
Nyp = Mg (Ng) Fig.18

The disecontinuity in the curve of Fig.16 indicates that the
suppression of the length increase of the supply zone, Just described,
at decreasing g values quite suddenly occurs at a certain value

for Nge
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4.7 Compensation for the Boundary Layer Displacement

In Section 3.3.2 1t was demonstrated that it suffices to com=-
pensate for the boundary layer dispiacement in the exit zone of a

wind tunnel contraction. The curve for the wall friction coefficient

Ce is practically independent of the Reynolds number of the con-
traction flow. It can, llke the curve for the potential flow, be
represented as a dimenslonless function of the contraction dimen-
sion.

The displacement thickness, on the other hand, is more dependent
on the Reynolds number. There can, however, be connectlons between

the contour curve, Reynolds number and displacement thickness,
making it possible to draw conclusions about the displacement of
the core flow in the exlt zore, without a complete ooundary layer
calculation. Thls 1s made possible in the first place by the
equality of el,eh,eS and é% for all occurring wind tunnel con-
u|uk
tractions. The curve for the contour velocity in the exi. flow
zone of .11 these contractions 1s therefore practically equalized,
if represented relative to the exlt wall distance Vg (compare
Figs.23-26). Sample calculations have shown that the increase of
the displacement thickness in these areas at differing contraction
ratios k is almost equal, when only Vg and u correspond. A3
described in Sectlon 3.3, the boundary layer becomes extremely
thin at the polnt of the greatest contour velocity. Downstream
of this point the boundary layer increases in thickness again.

In order to compensate for fThe displacement of the boundary layer

in the exit zone, the difference between the displacement thicknrss

st and the displacement thickness at the point of the greatest

reloelty 6: are added for the contour established for the
max

section from the point of highest veloclty, for frictlonless flow.

For the curve of the difference st - 6: as a furction of ?»,
max E
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an analytical approach was chosen, accurately simulating the curve
except for one factor. This factor depends on the Reynolds number:

v (4.18)

Details about this procedure can be found in Appendix 5. The /6

function was normalized, so that the factor is equal to the difference

d = em— s —_— (14.19)

between the displacement thickness at point E and a reference value.
Figure 19 shows d as a f'ncticn of Re. As the displacement thick-
ness shall be compensated for, downstream of the point of maximum
contour velocity, also the location of this point must be known.

It can be taken from Fig.20 for the respective value Ng-

4.8 Application Example and Accuracy Check

In the precading sections a number of diagrams were prepared,
from which, for an assumed contraction ratio k (or ng respectively),
the absolute value of the contraction (possibly in the form of the
greatest ordinate value yA) and of the velocity u in the test
section, all parameters can be determined, establisiking the curve
for the contour of a wind tunnel contraction. In Appendix 6 a
relatively simple computer orogram is provided, with the aid of
which the contour of the contraction can be calculated point by
point from the parameters. The method and the accuracy cof this
calculation will be detailed in the followlng example,

Be it assumed that the contour for a two dlimensional wind

cunnel contraction is required. In the entry cross section the
distance between the contour and the centerline 1s:
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:
y, = 1.5m (4.20)  f64
The required contraction ratio:
3 (b.21)
or: {
ng = 0.333 (4.22) ;
3
The designed velocity for the test sectlon: %
i = 6ol (4.23)
The required contour is calculated point-by-point with the §
aid of the computer program discussed in Appendix 6. For this i
purpose, the following set of parameters can be obtained from :
the diagrams (the center column contains the designations used g
<
in the computer program): i
y, = RMAX = 1.5m (given)
ng = M = 0.333 (given) i
L = XL = 1.82 (from Fig.17) 4
Wy = WH = 0.581 (from Figs.1l5 & 18) é
w, = WL = 1.248 (from Fig.1l4) %
w, = WS =-2,325 (from Fig.16) '_-
a = DD = 0.0047 (from Fig.19) 3
i
E-—Eu :
JE_Tmax . oxy = 1.45 (from Fig.20)
= g
Ax = DX = 0.1lm (given) §
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The value Ax gives the required distance of the x values of
the point, in which the contour ordinate values shall be calculated. {

The table for y(x), reproduced at the end of Appendix 6, was /65
calculated with the ald of this program based on these data. As
a result of the boundary layer displacement, the exit cross section
¥y becomes greater than Yp © Mg This achieves that the contraction Poe ;

R

of the flow more accurately represents the contraction ratioc k than
would be the case without compensation for the boundary layer dis-

placement.

With this example a check shall be made of whilch errors are
zaused due to ignoring the boundary layer displacement in the : !
supply zone, and by the analytical apprcach for the boundary ) !
layer displacement In the exit zone. The computer program of
Chapter 2 1s initially used to calculate the apprcpriate potentiail : i
flow. This 1s based on a contour curve without compensation for
boundary layer displacement in the exit zone. The result of this
computation 1s represented in Fig.21 as a plotting dlagram.

A boundary layer computation in accordance with Section 3.4 ’ 3
is carried out with regard to this potential flow, starting at

the entry of the flow at the section with constant flow, up to the 4 3
entry of the flow in the test section. The example has been :
chosen in such a way as not to include the re-formation of .

laminar flow. Thus the curve for the entlre boundary layer can
be calculated. From the contour curve, which led to Fig.21l, the
displacer . .t density 1s now subtracted. Only in the area of the
exit zone, 1in which the displacement effect can be compensated for, i \
in accordance with Section 4.7, rot the displacement thickness,

but the value 6: (compare Section 4.7) 1is subtracted. ks .

max ' S‘a

For the contour curve, so obtalned, the pctential flow is (66 i !

computed with the program from Chapter 2. Thils potential flow ) 4
54 |
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results in the sample contraction with compensation for the
boundary layer displacemant along the entire contraction wall and
the constant flow section wall. The result is represented in
Fig.22. A comparison of Fig.21 and Fig.22 demonstrates that the
velocity profiles in the exit flow cross sections virtually coincide.
Thls demonstrates that the compensation for the boundary layer
displacement, in accordance with Section 4.7, 1s fully aaequate to
satlsfy the requirements of the auxiliary condition (4.2).
Furthermore the velocity curve u(f) coincides so accurately, that
non-compliance with the auxiliary condition (4.3), caused by
ignorling the boundary layer displacement in the supply zone can
also be ignored.

~
[0,
-3

4,9 Discussion of the Results

|

Analyzing the curve for the optimal contraction contours in
Figs.23-26, the contradiction to the traditional wind tunnel con-
tractions is immediately noticed, in that the contours show signi-
ficant curvature relatively close to the exit cross section, in
other words, that the contour inversion points are relatively close
to the exit cross section. Conventional contours generally have
drawn-out, weakly curved exit zcnes. The reason for this is shown
in Fig.1l1. For an uncorrected contour curve, the contour velocity
in the exit zone approaches the average value u of the velocity
in the exit cross section asymptotlcally. With lncreasing exit
zone length, the veloclity profile in the exit cross section becomes
more constant. As the effect of the contour corrections cannot be
accurately predetermined up to now, the contours were opened up slightly
only immediately upstream of the exit cross section, in order to
improve the profile. Disadvantages of such contours, compared to
those developed in the present work, are a greater length, 1increased
by about 20-20%, and relatively thick boundary layers in the exit

cross section.
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In order to demonstrate this comparison, the computational
checking method, developed in the present work, was used to cal-
culate the steady flow section and contraction of the 0.5m wind
tunnel of the Institute for Thermodynamics and Fluid Dynamics at
the Ruhr University at Bochum. The plotter-drawing of Fig.28 /68
shows the results. A boundary layer calculation showed that
immediately upstream of the contraction the boundary layer sepa-
rates. From the u(f)-curve in Fig.28 it can be seen that the
pressure increases significantly at that point. Tests at the
contraction showed that the pressure increase in reallity 1s less
pronounced than the calculated value. Also this indicates boundary
layer separation. A filament probe, entered into the contraction
from the test length, however, did nof show any separation with
return flow along the wall. Rather, eddies were found with axes
in the flow direction. Thils phenomenon sup sests a wall-curvature-
effect similar to t.ie Taylor-Gortler vortex formation. What
probably occurred there is that the wall frictlon, decelerating
the flow, 1s forced away from the wall due to centrifugal action.
The boundary layer equations are set up under the assumption that
the boundary layer thickness is of a lesser order ol magnitude
than the longitudinal curvature radius of the wall. Nearly
separated boundary layers are so thick, that thlis condition is
no longer satisfied. Thus the boundary layer calculation would not
predlet such a phenomenon.

Figure 29 shows the contour and the veloclty curve for a
contraction sultable for the same wind tunnel, calculated according
to the method described in the present work. The essentially lesser

velocity decrease in the area of the steady flow section, relative /69

to Fig.28, can be recognized. Furthermore,this contraction 1is
essentially shorter, thus increusing the test length by 0.23m.
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5.  Summary /10

The present work has attempted to develop a theoretical method
for the calculation of optimal contours for two dimensional and axi-
symmetrical wind tunnel ontractlions in the subsonic range.

It has been shcewn in Chapter 1 that the earlier methods in
this area are unsatisfactory, because of the absenc:z of.an adequate ]
computational procedure for the flow characteristics. With the ald \
of electronic computers 1t has become possible to develop such a
computational procedure in which the flow in the interior of the
contraction 1s calculated as a potential flow, while the wall
friction has been taken into consideration by means of boundary
layer calculations. j

In order to calculate the potentlal flow, vortex sheets are
used in Chapter 2 to represent the walls in the singularity model.
The local circulation of a layer has been determined satisfying the
kinemat.c flow conditions at a number of points on the layer. The
upstream and downstream boundaries of the vortex sheets are repre-
sented by source and sink layers. A Fredholm integral equation
of the second degree has been derived from this arrangement to
represent the circulation distribution of the vortex layer. The
integral equation is solved by means of translatlion into a system
of linear equations. As has been shown in Chapter 3, certain /71
demands should be made of a method to calculate boundary layers
at the walls of wind tunnel contractions. This 1s due to the fact
that the pressure gradient changes sign several times between the
entry of the flow into the steady flow sectlon and the exlt at
the test length. For this reason, the boundary layer calculatlons
have been zarried out with the use of a method developed by
Bradshaw et al. [30]. This method solves a hyperbolic system of
three partial differential equations for the mass transport, the
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impulse transport, and the turbulent energy transport, from which
the boundary layer properties are determined. This method was
particularly suitable to the present problem as, including the
turbulent energy transport, the history of the boundary layer 1is
relatively well compensated, even at changing external conditions.

The computational method is used in Chapter 4 for the optimi-
zation of wind tunnel cortractions. An attempt was made to find
the shortest contractions possible, satisfying the conditions of
a glven contraction ratio, a given homogeneity of the flow
veloclity at the contraction exit, and the requirement that the
contour should eliminate the possibility of boundary layer
separation. It was shown that the contour of satisfactory con-
tractions can be determined by means of fixed parameters. For
some of these parameters the above mentioned auxillary conditions
are the determinants. By means of varying some of the other
paraneters, 1t has been shown that they do not essentially affect
the contraction length. By means of varying the other parameters,
with the aid of the computational method, diagrams were developed
from which 1t was possible to determine an optimal contraction
contour for each required contraction ratio. For thls purpose.

a computer program has bc2n prepared, which calculates the contour
curve point-by-point from che parameters.
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Appendix 1 /78 e
Analysis of the Kernel Functlon G(£,£') for the Range E=E!
Axi-Symmetrlcal Flow )
The kernel function G(§,8') 1s given in Egs.(2.27), (2.5) e
L]
and (2.7). For the range E=E' 1t 1is treated similarly to Hucho's i
treatment [20]. é
* + e ] *
G(E,§') = {u (£, + vi(g,en g—%} Ya (A1.1)
1 ‘ 2 (n=n') n°' Lo
G:(E.E') - K(k)-{l + }E(k) - T
% (E-E 1T+ n+n ") ? (£-£°)*+(n-n")? P
; dn (£-£") 2nn
i K(k)=~[1+ E(k
§ at n/(g-€') 2+ (n+n')? (E-£') ¥+ (n-n")? e
g il - I{K(k)-E(k)}{l- ;’l‘- 15-‘-5-'-)-} -
3 /(E—C')’+(n+n‘)2l L
%
5 - E(k) { 20 }{(n-n') -~ 91 u;-w} (A1.2)
¢ (E=5') *+(n-n")? I '
gﬁs with . 2} n nl
¥ - Al.l
4 (£-£')*+(n+n*)? (A1-3)
I .
g
E The value n' is developed as a Taylor series for (£-£'):
? -pty 2 B
n' =n -~ g-%(c-i'l + g-;Q -‘-5-{—’- = e Al1.4)
»
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The series 1s not extended beyond the third term. Substituting
Eq.(Al.4) in Eq.(Al.2) results in:

, 1
G (5,8") = — :

V‘ﬁ‘ﬁ')’-&{;&-n-({-{ )g% +..(£ 60)3%57,\_}

. {x(x)-z(k)}{ 9-'1~5-'-5—’-}

dg

0-

20 - 2(6-¢° )9% + (£-£") 5

al l] )
TR (R I TE !

-

200 {

. -'.d..'l--l- -l!d,"__dﬂ -p? ‘ “\
{(c e85t ~hee-en g - S )] (A1.5) |

3 Substituting Eq.(Al.4) in Eq.(Al.3) results in:
: 2 vyan 2
5 nt - n(e-eG + E-E")
k = 2 — (A1.6)
4 (661 % + {2n -(e-g0 3T +hce-e . —-i}
%
for the argument k of the elliptical integral E(k) and K(k). ‘%
From Eq.(Al.6): -3
Hmk =1 (A1.7) ‘
£+¢’ 4
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3
g Abramowitz and Stegun [21] (p.591 and 592, Eqs.17.3.26 and 3
'f; 17.3.35) gives the following approximations for the argument . g
in this limiting case:
1m &(k) = L tn 26 o gn 4 (A1.8) f .
k1 2 7 TKT ki s T
lim E(k) = 1 (A1.9) 2
4 k+1
Substituting Eq.(Al.6) in Eq.(Al.8) results in: N
/80
o g 4 .
P K({=g') = &n s (A1.10)
£ PR +3(6-¢" 570
(e T+ {20 (66157 +5 (6=t ) Gd} |
;ff .
K Eq.(A1.10) can be restated:
K(E=£') = 1 8 xn N
B 3 n TR T (A1.M L
3 le-g° | J,mz {T + ‘3% - %(E"C')aﬁ)'F ‘v
%—* (=602 e (an (e ) G +te-t ) BER)
-ui.i l;
This results in: |
3
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6, (£58") = =
| (e (an-tc-e g +Fe-e) gD !

8n
. ¢n -
{ 4n? {1 + (dn -A(E-E')gégi‘}

fe-g'| [ LY
(E=E*) 2+ (2n-(E=E 1 57 +3(6-E") ")

yz4?
al

”1:

}, {2n-2(r-:')§% ~(€=€")

150
1+ [ -du-eng) LR

(Al.17,
For axl-symmetrical flow this results in:
8 n
1 al
G_(E2E') o ~-{zn— ._;} .
r 2n |5-5.|vﬁ+(%%) 1,(3{ ag (A1.13

Two Dimensional Flow

The kernel function G(£,£') 1s given in Egs.(2.27), (2.9)
and (2.11). It 1s developed in the range ¢=E' in such a way as
to eliminate the unknowns. When Eq.(2.9) and (2.11) are also
substituted in Eq.(2.27), the followiny results:

' - n=n' +n'
ce“'c ) = (€€ J2+(n=n"1t * Z£-£'5g+ln+n')' +

£t ’
2 1 1= (Al.14)

d& T-t'5’ M=a™TT ~ dg (e T (nen
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Eq.(Al.4) is substituted in Eq.(Al.14) and expressions with
identical denominator are combilned:

d din
- -p vyl ‘- 2
Golexg!) = o d e R vt

(£-¢") +(<e g} %(e z')*d'")2

REARRRE R LR s I RE
{Al.15)
(g-£")? +[zn - (g- "’dz 2(5 ' )’d “)z

After simplifying and ignoring all terms in which (g£-&')

occurs as a factor, this results in:

d?n

{————3—-—-‘“ + -1-} (A1.16)
1 +(8)r " )
dg

N s

G (E=E") =

h6
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Appendlx 2

|

Analytical Computation of the Residual Integral from Eq.(2.35)
at Constant &, for E=£' in Axi-symmetrical Flow

The integral of Eq.(2.35) restated:

{a ,a') da° ' {A2.1)
A

The following equations were derived under the assumption
Aa<<1l, Eq.(A1.13) 1is copied from Appendix 1. Substituting
Egs.(2.31), (2.32) and (2.33) changes this equations into:

~ o 8 n n . ot
G_(E=E') = -5 {z == - 1 + - } (A2.2)
x b 2n nlE'5'|VH+(2J3 1+(%): g3

Eq.(A2.2) is substituted into Egq.(A2.1). From this, two
partial integrals are formed:

I =1, +1I (A2.3)

In integral Il the *ntegrand is fully independent of a':
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. 8“ - -
= Aa (f% {1n_______ - 1} + D57 {rA2.4)

Integral I, is: /83

a

! )

I, = - l 2—;1 tnlg-£'| da’ (A2.5)
a

In Eq.(A2.5) o and o' shall be substituted by & and £':

re
da'. - _d_‘ET . (AZ-G)

The integration limits of I2 can be developed in Taylor serlies:

. 2
= £la,49) = £la) + E(a) 2§ 4 Eea) A0 (A2.7)

2
v

o

A s .- 2
€= El0,~9) = £(a) - £la) 83 4 Era) 43 (A2.8)
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If the assumptlon Aa<<]l applies:

é = g‘ (A2.9)

Thus I2 becomes:

o
I, =- 53 tnlg-g'| ag*

tu

E'=E,
= -% ((E-:‘)(tnlg-g'l - 1) (A2.10)
£'=g

= o {u:-co) (en]g-g | - 1) -(g-£ ) (EnlE~g | - 1)}

R d ’ . L13 b d - "

(GBS (e (E2g +E2500-1) + (2889 (e g -E0E) 1),
) 3
(AZ- 11 ]

ba i(n 8 n RE-

I, = 1,41, = 25 = (L }Ef?%?i -1) + At

{ E+ERD) [an (883 EA“ )-1) +

+(E-E29) (tn(EdS -t——ﬁ-)-xl} (a2-i7,

The values for £ and n occurring in Eq.(A2.12) and their
derivatives refer to the polint u.

€9

P W i pre

: 5 A IR TR ss2 oy AT i e " "
PO - ARG o e RS N

4
X

i
Tid

2
3
k¢

AR i b
A

= Doy ar b
Tt o ol gt | BATETEN S Sl e

e

RSN

T b

-~

ST

g By

R

¥

T T

e
LT e e



. : * L d
| . . ,:, ';j .
-
. 3
; U S U I 2N
*
RS 4

Appendix 3 /85

Transformation of Eq.(2.35) into a System of Linear Equations for
Qu, p=1,2,3,...,n for a & Curve, Quadratically Interpolated from
the Qu Values

The development of these linear equations is based on Eq.(2.35):

-

-~ ~

(wyoy ey ruy,y0a') Gla ,a') da’ 4 g tay)

[>4)
[']
E1
<~

<y
NE e

u=1,2,3,--.,n (A3.1)

0 Se—————
<
I
~l2
e AR e R

sk

PR AT

»?» This system of equations serves to calculate the n values
Gu, u=1,2,3,...,n. The function a(av_l,mv,mv+l,
in Eq.(A3.1), is computed with the aild o: the Lagrange interpolation
method, such as used by Abramovitz and Stegun [21] (p.878, Egs.
25.2.1 and 25.2.2). For a quadratic interpolation of the & values
it is:

T s

a'), occurring

QY IRTAREN S

w =1 o +2 o +L "

v=-1Yv-1 vV v+1%vel (h3.2)

R . ey e L
T B e TR B s e pay

In Eq.(A3.2) the factors 21 are developed from the following
equation by means of cyclical substitution of the indices:

wae . T h g e e
el i

(a'-a,_.) (a'=a_, .
t, = v-1 v+l (A3.3)
(ay-a,_y) (a,may,,) b

o

Thus Eq.(A3.1) is developed into the following system of
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linear equations:
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lv+lé(au,u') da'} + Gq(au) (p3.4

u=1,2,3,¢¢,n

In Eq.(A3.4) the integrals occurring are perfect local
functions, which can be calculated without knowing the @ curve.
For the present work a computer program was developed, in which
the iIntegral values were calculated andasembled in a coefficient
With the aid of this matrix the system of equations was
At three points, however, the coefficient calcu- X

matrix.
solved for &u.
lation had to be modified relative to Eq.(A3.4):

a) at point v=1

b) at point v=p

¢) at point v=n.

e T

In cases (a) and (c) the value for @ is determined by

interpolation or extrapolation respectively, over the first :
N
three or the last three values for Gu In case (b) a smaller .
range to the right and to the left of the singular points of /87
the kernel Gr(au=av) 1s selected from the 1ntegration for the
71
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axi-symmetrical flow per Eq.(3.4). 1In this range the analytical
solution of the integral from Appendix 2 is substituted, multiplied
with the constant value Gu.
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Compensation Function for Boundary Layer Displacement in a Wind Tunnel Contraction
from Subroutine KONTUR '

LOGICAL ERSTIRIT _
Y(X)USTE(XeRV ) «SQRT( 1 4P SR {XnRR)I(HaRK ) ) 82,914, 28TANRL (XeRK ) /12,
IF(DLR,LI,X) G T3 10 . .
ERSTa,TRUE. ) .
VERD=Q,
RETURN
10 IF{ ,NOT,.ERST! GC TO 20
ERSTu,FALSE,
1F{RUTY GO YO 15
$Tn,1903 .
54,0041
A0e853,9
RKE2,
[l B o R _...A6
15 8Tw,3 . -
F5e,01 : . 3Tl
AGal?,2 B
ARu30
16 XANDTS ,eXVELN0, )
. YANsY (XaH) . e em
20 X Se(OLax}/EMINSGL00.475, - .
CVESRDEEY(XLIWYANIZAGRHDD __ - - O .
RETURM o o )
U 11 i - : )
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Contour Curve for a Wind Tunnel Contraction
(Compensation for Boundary Layer Displacement)

RMAX & 1,500000"
EN & §,33300¢
XL & 1,820000
wH = 0,98100¢
WL s 1.,24P0C0
WS @ «2,325000
OC s c,006700¢
Xy 8 1,650000
Ox »  0,100Q00M

InEIDIMENSIONALE STRQE: UG

0.C

0,108
c.2000
042000
044000
043000
0.6090
0.,7000
00,3000
90,9000
1.0000
1,1000
1.2000
1,300C0
1.4000
1,3000
1.5000
1,7000
1.8¢00
1.,5000
2.00C0
241000
2,2000
2+,3000
244000
2¢500C
26000
2.7000
2.7300

$Tip

1.5000
14998
1:,4986
1,4955
1,4894
1.0797
1,665%
1,0458
1,4200
1:2372
134066
1,2973
1¢2394
1,1718
1,090
1,0033
0:2137
00,0123
0.7063
0:5994
00,5355
Ce5076
0.:4943
0,4913
09967
045004
0,50)8
045047
0,5C13

L4

ENDE STLwP (1.00) 0,3

M4
o

(2- dimensional flow)
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Appendix 7 1=

Computation of a General Function for the Contour Curve

The following shows a method which can be used to compute the
coordinates of a function, satisfying the conditions set for the
contour function y(x). The derivation of the necessary equations
is carried out in a general form here, since the same functions
are also used in Section 4.4 for the contour correction at the
end of the contraction.

Problem

A function shall be computed so as to satisfy the following
conditions:

x = x, + Y=y, ) (A7.1)
d-
x-xw -* a-’%no (A7.2)
dz
xaxw > -&-‘;no (A7.3)
X =0 * §§ =Yg (A7.4)
no maximum, minimum or inversion point in the
range 0<x<x (A7.5)
Given
y !
xw,yw:bo
Solution

Initlally a polynomial of the flfth degree 1is calculated:

y=ax*+bhx®+cx (A7.6)
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satisfying the conditions (A7.1), (A7.2) and (A7.3), substituting
a value iw for the value of the abscissa x . The value iw is
determined in such a way, that point (iw,yw) is transformed into
the point (xw,yw). This transformation is required in order to
satisfy condition (A7.4). The transformation must therefore have
the following properties:

x, - x, (A7.7)
%ﬁl- -0 §§| =0 (A7.8)
. Xu \ Xuw .
d .
d ‘l- o + $¥| -0 (A7.9)
X, x,
- y -»> -y
3§ =0 © dx x=0 o
No new maxima, minima or inversion points are
created (A7.11)
Solution

Part 1: Determination of a Polvnomial, Satisfying (A7.1), (A7.2)
and (A7.3) for Point X = iw

Condition (A7.5) is satisfied by the use ot (A7.6).

To determine the coefficients a,b and ¢, it 1s assumed that
Eq.(A7.6) shall satisfy the conditions (A7.1), (A7.2) and (A7.3)
for point X = iw‘

(A7.1)+

®1

: Y, =ax +bx +ecx, (A7.12)

(A7.2)»

- = g
0 5 a X, +3b Xy, +c (A7.13)
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& - %’?‘,vﬁ?ﬂmMvumpwm«,k“.,-.,hm,” i B

(A7.3)~
-3 -
| (o} -ZOaxw +3bxw
(A7.14)~
3 b
a.-—-—
lOR:'

(A7.15) in (A7.13)~

-3y x? %2

O = 3 b xw +43)b Xy
2 ¢
b----—.
3 x&

(A7.16) in (A7.15)~+

l ¢

a = - amse
2

5 2"

- (A7.16) ¥nd (A7.17) 4in (A7.12)~

1 - -
Yy = 5 C X, -§cxw
15 Yw
c ==Ll
8 Qw
(A7.18) in (2.7.16)~
ry.d
b ,,2=T
4 xw
(A7.18) in (A7.17)~+
3 Yw

a = -
>3
hi X3

The slope at the coordinate orlgin therefore is:

dy - 15w
d2§=o 8Rw

From (A7.21) it follows that condition (A7.4) can generally

not be satisfied with (A7.6).
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,g Part 2: Transformation of Fquation (A7.6) f
.
13 Eq. (A7.6) must be transformesf in such a way, that Eq.(AT.4)
‘}; applies, without losing the applicability of the conditions (A7.1), ‘
O (A7.2) and (A7.3). As will be shown below, the transformation /106 -
£ equation t
- X = x +py (A7.22) ‘
g& satisfied this requirement. With thils transformation the y v=2.ues
g remain, and only the x values are changed. For y = Yoe? in
g accordance with (A7.1) and (A7.2): -
% '
; z )
. dy - g , dx :
| d"lx a‘%li a|, " (A7.23) v
g —— W w
,; .0' eq. ‘57013)
£
:
# Similarly for y =y, , in accordance with (A7.1) and (A7.3): '
‘ a? a? ax a “[gz x ] %
¥ . ax . X1 3w dx
mlx - {zm‘fl; a'x ¥ a§|; |z } Bl .o
: w o v *w Xw
"0, Eq.(k?.“) .O' &-(:\7.13) (A7‘24) 3
: s
: f 53
X In accordance with Eq. (A7.21): -k
J -
i %l wy! = d o g—’sl ;
% x=0 ° 4R 130 M*ix=0 4
15 Yw a | :
. - - - (1 +p ) . ‘,?-Z
: 8§ %, e x=0 2
v 3
5 -t 8 Xw A
{;:; p = ;;- + 1% F; (A7.25) 'ué
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Eq.(A8.22) thus becomes:

For point x = x_:
w

8 Xw _ 1

®i
L}
Q“I

t ]
"

Result

The functior reaguir-d is:

»
"
[--11 "]
!
xi
]
LY
Eaby
xu
+
&<

with:

and:

s R et

(A7.26)

(A7.27)
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(A7.28)

(A7.30)
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Numerical Representation

In the present work the value for the function (A7.28) is
required at discrete points. For this reason the value iw is
calculated first from Eq.(A7.29) from the given values XV and
yé. Subsequently a series of points (X,y) are computed with
Eq. (A7.28) and transformed into x values with the aid of Eq.(A7.30).
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(longitudinal cross section)
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wind tunnel contraction

Top: velocity profile in the boundary layer
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for the displacement thickness

Bottom: curve for the pressure relative to the
pressure in the exit cross section and
curve for the wall ¢riction factor Ce
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